Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

نویسندگان

  • Min-Xian Qian
  • Ye Pang
  • Cui Hua Liu
  • Kousuke Haratake
  • Bo-Yu Du
  • Dan-Yang Ji
  • Guang-Fei Wang
  • Qian-Qian Zhu
  • Wei Song
  • Yadong Yu
  • Xiao-Xu Zhang
  • Hai-Tao Huang
  • Shiying Miao
  • Lian-Bin Chen
  • Zi-Hui Zhang
  • Ya-Nan Liang
  • Shan Liu
  • Hwangho Cha
  • Dong Yang
  • Yonggong Zhai
  • Takuo Komatsu
  • Fuminori Tsuruta
  • Haitao Li
  • Cheng Cao
  • Wei Li
  • Guo-Hong Li
  • Yifan Cheng
  • Tomoki Chiba
  • Linfang Wang
  • Alfred L. Goldberg
  • Yan Shen
  • Xiao-Bo Qiu
چکیده

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic β subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of epigenetics in spermatogenesis.

Male germ cells have a unique morphology and function to facilitate fertilization. Sperm deoxyribonucleic acid (DNA) is highly condensed to protect the paternal genome during transfer from male to oocyte. Sperm cells undergo extensive epigenetic modifications during differentiation to become a mature spermatozoon. Epigenetic modifications, including DNA methylation, histone modifications, and c...

متن کامل

Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids.

In order to study the relationship between acetylation of histones, chromatin structure and gene activity, the distribution and turnover of acetyl groups among nucleosomal core histones and the extent of histone H4 acetylation were examined in rooster testis cell nuclei at different stages of spermatogenesis. Histone H4 was the predominant acetylated histone in mature testes. Hyperacetylation o...

متن کامل

Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration.

Pesticide exposure has been implicated in the etiopathogenesis of Parkinson's disease (PD); in particular, the organochlorine insecticide dieldrin is believed to be associated with PD. Emerging evidence indicates that histone modifications play a critical role in cell death. In this study, we examined the effects of dieldrin treatment on histone acetylation and its role in dieldrin-induced apop...

متن کامل

CBP/p300 and SIRT1 Are Involved in Transcriptional Regulation of S-Phase Specific Histone Genes

BACKGROUND Histones constitute a type of essential nuclear proteins important for chromatin structure and functions. The expression of major histones is strictly confined to the S phase of a cell cycle and tightly coupled to DNA replication. METHODOLOGY/PRINCIPAL FINDINGS With RT-qPCR and ChIP assays, we investigated transcriptional regulation of the S-phase specific histone genes and found t...

متن کامل

The effect of aspirin on the interaction of histone 05 and 05-DNA

The linker histones (H1 or H5) which play a key role in the folding of chromatin, are general repressors of gene expression. Nuclei of the mature chicken erythrocytes (and in some mammalian cells) contain both of them. Although the interaction of H5 with DNA is stronger than that of H1, it does not prevent the transcription of some erythroid-specific genes. It has been shown that some modificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2013